Product Description
Product Description
Technology |
Powder Metallurgy |
Metal injection moding |
General Material |
Fc5718/Fn5718 |
17-4Ph/4605 |
Density |
6.7-6.8 |
7.7-7.8 |
Hardness |
Fc5718(20-30HRC) Fn5718(35-40HRC) |
17-4Ph(35-40HRC) 4605(45-50HRC) |
Application |
Medical apparatus and instruments Hardware field Automobile industry Home appliances |
Main Advantages
1) Powder metallurgy can ensure the accuracy and uniformity of the material composition ratio.
2) Suitable for producing products of the same shape and large quantities, low production cost.
3) The production process is not afraid of oxidation, and no material pollution will occur.
4) No subsequent machining processing is required, saving materials and reducing costs.
5) Most difficult metals and compounds, pseudo alloys, porous materials can only be manufactured by powder metallurgy
FAQ
Q: Are you trading company or manufacturer ?
A: We are factory and trading company
Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock, it is according to quantity.
Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.
Q: What is your terms of payment ?
A: Payment=1000USD, 30% T/T in advance ,balance before shippment.
If you have another question, pls feel free to contact us as below:
Application: | Machinery, Agricultural Machinery |
---|---|
Hardness: | Soft Tooth Surface |
Gear Position: | External Gear |
Manufacturing Method: | Cast Gear |
Toothed Portion Shape: | Spur Gear |
Material: | Cast Steel |
Customization: |
Available
| Customized Request |
---|
Can rack and pinion mechanisms be customized for specific machinery and equipment?
Yes, rack and pinion mechanisms can be customized to suit specific machinery and equipment requirements. Here’s a detailed explanation of how rack and pinion systems can be customized:
- Size and Dimensions: Rack and pinion systems can be customized in terms of their size and dimensions to fit the available space and integration requirements of the machinery or equipment. The length, width, and height of the rack can be adjusted, and the pinion gear size can be modified to ensure proper fit and compatibility.
- Materials: The choice of materials for the rack and pinion components can be customized based on factors such as load capacity, environmental conditions, and specific application requirements. Different materials, such as steel, stainless steel, aluminum, or various alloys, can be selected to optimize strength, durability, corrosion resistance, and other desired properties.
- Teeth Profile: The tooth profile of the rack and pinion gears can be customized to meet specific application needs. Different tooth profiles, such as straight, helical, or even custom-designed profiles, can be utilized to enhance load distribution, reduce noise, increase contact area, or improve efficiency based on the unique requirements of the machinery or equipment.
- Precision and Tolerance: The precision and tolerance levels of rack and pinion systems can be customized to achieve the desired level of accuracy and motion control. Tighter tolerances can be specified to enhance positioning and repeatability, while looser tolerances may be suitable for applications that prioritize cost-effectiveness over extreme precision.
- Mounting Options: Rack and pinion systems can be customized to offer various mounting options to facilitate integration with specific machinery or equipment. Mounting holes, brackets, or specific attachment mechanisms can be incorporated into the design to ensure proper alignment, stability, and ease of installation.
- Accessories and Features: Customized rack and pinion systems can include additional accessories or features to enhance functionality and application-specific requirements. This can include the incorporation of sensors, limit switches, lubrication systems, protective covers, or any other components that are necessary for the proper operation and maintenance of the machinery or equipment.
- Integration with Control Systems: Rack and pinion systems can be customized to integrate seamlessly with the control systems of the machinery or equipment. This allows for synchronization, feedback control, and coordination with other system components, enabling precise motion control and automation in line with specific application needs.
By considering factors such as size, dimensions, materials, tooth profile, precision, mounting options, accessories, and integration with control systems, rack and pinion mechanisms can be effectively customized to meet the unique requirements of different machinery and equipment. Customization ensures optimal performance, reliability, and compatibility, allowing rack and pinion systems to be tailored for specific applications across various industries.
How do rack and pinion systems fit into the design of material handling equipment?
Rack and pinion systems play a crucial role in the design of material handling equipment, providing efficient and precise motion control for various handling tasks. Here’s a detailed explanation of how rack and pinion systems fit into the design of material handling equipment:
Rack and pinion systems offer several advantages that make them well-suited for material handling applications:
- Precision and Accuracy: Rack and pinion systems provide precise and accurate motion control, allowing for precise positioning and movement of materials. The direct engagement between the pinion and the rack ensures a positive and backlash-free transfer of motion, enabling precise and repeatable handling operations. This precision is essential in material handling equipment, where accurate placement and alignment of objects are critical.
- High Load Capacity: Rack and pinion systems can handle substantial loads while maintaining efficient power transmission. The engagement of the teeth provides a large contact area, allowing for the effective distribution of forces and torque. This load-handling capability is crucial in material handling equipment, where the system needs to lift, move, and transport heavy objects or loads.
- High Speed and Acceleration: Rack and pinion systems can accommodate high-speed movements and rapid accelerations, enabling efficient material handling operations. The direct power transmission and efficient torque transfer of rack and pinion mechanisms allow for quick and dynamic movements, reducing cycle times and improving overall productivity. This characteristic is advantageous in material handling equipment that requires fast and agile motion.
- Compact Design: Rack and pinion systems offer a compact design, which is beneficial in material handling equipment with limited space. The linear nature of the rack allows for efficient integration into the equipment’s structure, optimizing the use of available space. This compact design is particularly valuable in confined areas or when multiple axes of motion need to be incorporated into the equipment.
- Versatility: Rack and pinion systems offer versatility in material handling equipment design. They can be implemented in various orientations, such as horizontal, vertical, or inclined setups, to accommodate different handling requirements. Additionally, rack and pinion systems can be combined with other mechanisms, such as belts, chains, or gears, to achieve complex motion profiles and multi-axis control, enhancing the versatility of material handling equipment.
- Reliability and Durability: Rack and pinion systems are known for their durability and long service life. When properly designed and maintained, they can withstand the demands of continuous operation, repetitive movements, and heavy loads. This reliability is crucial in material handling equipment, where uptime, robustness, and consistent performance are essential.
In the design of material handling equipment, rack and pinion systems are commonly used in various applications, including conveyor systems, gantry cranes, lifting platforms, automated storage and retrieval systems (ASRS), and robotic arms. They facilitate precise and efficient handling of materials, optimizing productivity, and ensuring smooth operations in industries such as logistics, manufacturing, warehousing, and distribution.
What are the primary components of a rack and pinion setup?
In a rack and pinion setup, there are two primary components that make up the mechanism: the rack and the pinion gear. Here’s a detailed explanation of each component:
- Rack: The rack is a straight bar with teeth cut along its length. It resembles a gear but in a linear form. The rack is typically a long, narrow strip made of metal or a durable engineering plastic. The teeth on the rack are evenly spaced and have a specific profile that allows them to mesh with the teeth on the pinion gear. The rack can be stationary, meaning it remains fixed in place, or it can move linearly in response to the rotational motion of the pinion gear.
- Pinion Gear: The pinion gear is a small circular gear with teeth that mesh with the teeth on the rack. It is usually mounted on a rotating shaft, such as a motor shaft or an actuator. When rotational force is applied to the pinion gear, it rotates, causing the teeth on the pinion to engage with the teeth on the rack. The pinion gear transfers its rotational motion to the rack, resulting in linear motion. The size and design of the pinion gear, including the number and shape of its teeth, are chosen based on the specific application requirements.
Together, the rack and pinion gear form a mechanical linkage that converts rotational motion into linear motion. As the pinion gear rotates, its teeth push against the teeth on the rack, causing the rack to move linearly. This linear motion can be harnessed for various applications, such as steering systems, robotic arms, linear actuators, and other mechanisms that require controlled linear movement.
In summary, the rack and pinion setup consists of a rack, a straight bar with teeth, and a pinion gear, a small circular gear. These two components work together to enable the conversion of rotational motion into linear motion, offering a versatile and efficient solution for various mechanical systems.
editor by CX 2023-09-12